1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
| <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta http-equiv="X-UA-Compatible" content="ie=edge" /> <link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/openlayers/openlayers.github.io@master/en/v6.2.1/css/ol.css" type="text/css" /> <script src="https://cdn.jsdelivr.net/gh/openlayers/openlayers.github.io@master/en/v6.2.1/build/ol.js"></script> <title>Image Filters(滤镜效果)</title> <style> html, body, .map { height: 100%; width: 100%; } </style> </head>
<body> <select id="kernel" name="kernel"> <option value="none">无</option> <option value="sharpen" selected>锐化</option> <option value="sharpenless">锐化(轻)</option> <option value="blur">模糊</option> <option value="shadow">阴影</option> <option value="emboss">浮雕</option> <option value="edge">边界识别</option> </select> <div id="map" class="map"></div> <script type="text/javascript"> let key = "Get your own API key at https://www.maptiler.com/cloud/"; let attributions = '<a href="https://www.maptiler.com/copyright/" target="_blank">© MapTiler</a> ' + '<a href="https://www.openstreetmap.org/copyright" target="_blank">© OpenStreetMap contributors</a>'; let imagery = new ol.layer.Tile({ source: new ol.source.XYZ({ attributions: attributions, url: "https://api.maptiler.com/tiles/satellite/{z}/{x}/{y}.jpg?key=" + key, maxZoom: 20, crossOrigin: "" }) }); let map = new ol.Map({ layers: [imagery], target: "map", view: new ol.View({ center: ol.proj.fromLonLat([-120, 50]), zoom: 6 }) }); let kernels = { none: [ 0, 0, 0, 0, 1, 0, 0, 0, 0 ], sharpen: [ 0, -1, 0, -1, 5, -1, 0, -1, 0 ], sharpenless: [ 0, -1, 0, -1, 10, -1, 0, -1, 0 ], blur: [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ], shadow: [ 1, 2, 1, 0, 1, 0, -1, -2, -1 ], emboss: [ -2, 1, 0, -1, 1, 1, 0, 1, 2 ], edge: [ 0, 1, 0, 1, -4, 1, 0, 1, 0 ] }; /** * @description: 卷积矩阵标准化处理 * @param {type} * @return: */ const normalize = kernel => { let len = kernel.length; let normal = new Array(len); let i, sum = 0; for (i = 0; i < len; ++i) { sum += kernel[i]; } if (sum <= 0) { normal.normalized = false; sum = 1; } else { normal.normalized = true; } for (i = 0; i < len; ++i) { normal[i] = kernel[i] / sum; } console.log(normal); return normal; }; let select = document.getElementById("kernel"); let selectedKernel = normalize(kernels[select.value]);
select.onchange = () => { selectedKernel = normalize(kernels[select.value]); map.render(); };
imagery.on("postrender", event => { convolve(event.context, selectedKernel); });
/** * @description: 给canvas应用一个卷积核,任意大小的卷积核都能运行,但是如果大小超过了3 x 3后性能会下降 * @param {CanvasRenderingContext2D} context canvas2d上下文 * @param {Array<number>} kernel 卷积内核 * @return: */ const convolve = (context, kernel) => { let canvas = context.canvas; let width = canvas.width; let height = canvas.height;
let size = Math.sqrt(kernel.length); let half = Math.floor(size / 2); let inputData = context.getImageData(0, 0, width, height).data; let output = context.createImageData(width, height); let outputData = output.data; for (let pixelY = 0; pixelY < height; ++pixelY) { let pixelsAbove = pixelY * width; for (let pixelX = 0; pixelX < width; ++pixelX) { let r = 0, g = 0, b = 0, a = 0; for (let kernelY = 0; kernelY < size; ++kernelY) { for (let kernelX = 0; kernelX < size; ++kernelX) { let weight = kernel[kernelY * size + kernelX]; let neighborY = Math.min( height - 1, Math.max(0, pixelY + kernelY - half) ); let neighborX = Math.min( width - 1, Math.max(0, pixelX + kernelX - half) ); let inputIndex = (neighborY * width + neighborX) * 4; r += inputData[inputIndex] * weight; g += inputData[inputIndex + 1] * weight; b += inputData[inputIndex + 2] * weight; a += inputData[inputIndex + 3] * weight; } } let outputIndex = (pixelsAbove + pixelX) * 4; outputData[outputIndex] = r; outputData[outputIndex + 1] = g; outputData[outputIndex + 2] = b; outputData[outputIndex + 3] = kernel.normalized ? a : 255; } } context.putImageData(output, 0, 0); }; </script> </body> </html>
|